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Abstract 

Recent research suggests that chimpanzees are capable of 
level 1 perspective taking (Flavell, 1992), but that its 
expression is limited to situations of increased competition 
(Brauer, Call, & Tomasello, 2007). We present a model 
utilizing gaze-following that learns in response to the 
behavior of a competitor. The model not only learns the 
proper application of the perspective taking strategy but also 
the critical spatial characteristics that influence the 
competitive pressure. 

Introduction 
Under normal conditions most children will eventually 

develop a full theory of mind and have full visual 
perspective taking (Corkum & Moore, 1995,1998; Moll & 
Tomasello, 2006).  Most researchers believe that 
chimpanzees have neither a full theory of mind nor full 
visual perspective taking (Povinelli et al., 1994; Tomasello 
& Call, 1997).  Whether chimpanzees have any perspective 
taking ability at all has been subject to some recent debate. 

Experimental studies using a variety of paradigms have 
previously been unable to find strong evidence for 
perspective taking.  In fact, two of the major experimental 
labs consistently agreed that chimpanzees had no visual 
perspective taking ability (Povinelli et al., 1994; Tomasello 
& Call, 1997).  However, a novel paradigm suggested that 
chimpanzees did, in fact, know what others could and could 
not see (Hare et al., 2000; 2001).  In this paradigm a 
subordinate and dominant chimpanzee competed with each 
other for two pieces of food, one of which was hidden to the 
dominant (figure 1, left). Since the subordinate preferred the 
hidden food, Hare et al. concluded that it was aware of the 
dominant’s visual perspective (2000, 2001). 

Unfortunately, in a series of experiments, Karin-D'Arcy 
and Povinelli (2002) were unable to replicate the original 
Hare et al. (2000) findings.  Karin-D'Arcy and Povinelli 
used a more stringent coding methodology and suggested 
that chimpanzees do not understand what others can and 
cannot see but instead use a variety of competitive strategies 
to succeed in such scenarios, such as preferring food near 
barriers. 

One difference, however, between the two sets of 
experiments was the size of the testing area.  In the original 
Hare et al. (2000) experiment, the testing area was 3m x 3m, 
but Karin-D'Arcy and Povinelli (2002) used a smaller 
testing area that was 2.6m x 1.8m.  It is possible that this 
size difference could have driven the dynamics and the 
competitiveness of the situation for the chimpanzees.  For 

example, in a smaller area, it is possible that, since the 
submissive was released before the dominant, the 
submissive was able to quickly grab the food, making the 
use of visual perspective taking less relevant.  In the larger 
area, the competitive aspects of the area could make a quick 
grab of the food less effective since it would take the 
submissive longer to approach the food. 

 
Brauer, Call, and Tomasello (2007) tested this idea by 

making several changes to their experimental paradigm, 
using the stronger methodology that Karin-D'Arcy and 
Povinelli (2002) suggested and manipulating the spatial 
characteristics and therefore the competitive nature of the 
situation.  Specifically, Brauer et al. (2007) manipulated the 
location of the food to be nearer or farther away from the 
submissive (figure 1).  They found that in the less 
competitive situation where the food was closer to the 
submissive, chimps did not seem to use visual perspective-
taking.  However, in the more competitive situation where 
the food was further away, chimps did seem to use visual 
perspective taking, preferring to pursue the hidden food 
(figure 2).  

While the empirical data suggests that chimpanzees do 
have some form of visual perspective taking, it is unclear 
what degree of visual perspective taking is needed.  Other 
researchers have suggested different levels of visual 
perspective-taking, mostly focused around the development 
of human children (Flavell, 1992).  This work suggests that 
human infants, by one year of age, can follow another’s 
gaze to targets (Corkum & Moore, 1995; 1998).  By 12-15 
months, a child knows a great deal about what others can 
and can not see, including (a) that an adult’s line of sight is 
blocked by a screen unless it is transparent or has a window 
in it (Caron et al. 2002; Dunphy-Lelii & Wellman, 2004); 
(b) that an adult will not be able to see a target while their 
eyes are closed (Brooks & Meltzof, 2002); and (c) that an 

subordinate subordinate 
Figure 1. Dual-food layout for Brauer, et al (2007). 

Visible and hidden food nearer subordinate (left), and 
further away (right).   



adult can see something that the child can not when the 
adult looks to locations behind them or behind barriers 
(Moll & Tomasello, 2004). 

Most researchers interpret these findings as evidence of 
level 1 visual perspective-taking (Flavell, 1992):  
understanding the content of what a child sees may differ 
from what another may see.  Level 2 visual perspective 
taking is achieved when a child understands that people can 
see the same view from different perspectives.  After level 1 
and 2 visual perspective taking, normally developing human 
children also achieve a full theory of mind (knowing that 
others can have different thoughts and beliefs). 

Hare, Call, & Tomasello (2001) suggested that 
chimpanzees are able to engage in level 1 visual perspective 
taking but not level 2.  We modeled level 1 visual 
perspective taking to determine if it is sufficient to match 
the data from Brauer et al. (2007). We embed our simulation 
within a learning framework as well to explore how 
different competitive strategies can be learned. 

Specifically, a model of chimpanzee competitive food 
foraging was developed within ACT-R  (Anderson, Bothell, 
Byrne, Douglass, Lebiere, & Qin, 2004) utilizing the 
architecture’s procedural learning mechanisms and a new 
gaze-following capability to support level 1 perspective 
taking. 

Experiment 
The refined methodology of Brauer et al. (2007) used a 
testing environment that was 2.5m x 2.6m, with barriers 
placed at the extreme sides of the cage. In the near 
condition, the barriers were equidistant between the two 
entrances. For the far condition they were moved 0.5m 
closer to the dominant’s entrance. Food pieces were either 
placed behind the barrier (visible to the subordinate only) or 
on top (visible to both). On each trial, there could be two 
pieces of food (one hidden and one visible), one visible or 
one hidden.  

The trial began when the subordinate’s door was opened 
allowing it into the environment. After the subordinate 
entered the cage, the dominant’s door was opened (usually 
within 2s). The subordinate’s food preference was recorded 
when it made a reaching gesture in the direction of a piece 
of food before the dominant had approached any barrier. 

The single food trials were control conditions testing the 
possibility that the subordinate might simply prefer food 
located near barriers (Karin-D'Arcy & Povinelli, 2002). The 
critical comparison is between the two distance conditions. 
When the pieces of food were near the subordinate, it chose 
indiscriminately. Because of its head start (~2s), the 
subordinate could pursue either piece, and was often able to 
acquire both. However, when the food was closer to the 
dominant, the subordinate preferred the hidden food almost 
2:1 (figure 2). 
  

 

Figure 2. Subordinates prefer hidden food when 
competitive pressures are greatest (right). Error bars are SE 

(Brauer, et al, 2007).  

Model 
Models of both the dominant and subordinate 

chimpanzees were built in ACT-R (Anderson, et al., 2004). 
These models were run within the Player/Stage environment  
(Collett, MacDonald, & Gerkey, 2005) that mimicked the 
structure of the actual experiment.  

As an integrated architecture, ACT-R provides multiple 
mechanisms for representation and learning. These 
particular models rely upon ACT-R’s procedural memory 
and learning. At any given time there is a set of productions 
(if-then rules) that may fire because their conditions match 
the current external state of the environment or internal state 
of the model. From this set of competing productions, a 
single one is selected and fired, ultimately modifying the 
environment or internal state. ACT-R uses the predefined or 
learned utilities of productions to determine which will be 
fired.  

To learn production utilities, ACT-R uses an elaboration 
of the temporal-difference (TD) algorithm (Sutton & Barto, 
1998). The elaboration in ACT-R is more applicable for 
human learning and allows it to be more easily incorporated 
into a production-system framework (Fu & Anderson, 
2006). Briefly, any time reinforcement is given (e.g., a 
banana eaten or physical punishment) the reinforcement 
value is propagated back in time through the rules that had 
an impact on the model receiving that reinforcement.  
Reinforcements (either positive or negative) gradually shift 
utility values and therefore the relative probability that a 
particular production will be selected over others within a 
set of competitors.  

The application of ACT-R to non-human cognition 
presents many challenges. Even though chimpanzee 
cognition shares many similarities to that of humans, the 
architecture may still provide too much capability. Because 
of this we intentionally used the least-common-denominator 
in these models. The chimpanzee models make no use of 
declarative encoding or retrievals, nor does it engage in any 
imaginal operations. The models are driven predominantly 
by reactive productions and rely upon an impoverished goal 
representation (merely storing what target to pursue). 



Gaze-following 
To implement gaze-following in ACT-R, a new set of 
optional constraints were introduced to the visual search 
mechanism. ACT-R’s basic visual search mechanism takes 
a request to find a percept matching some set of features 
(e.g. where is a red object?). The possibly features include 
both visual properties (i.e. color, size) and limited spatial 
information (e.g. nearest the current focus of attention). The 
location of the first matching object is returned to the model 
allowing it to attend to that location and encode the actual 
visual representation of that percept. 

Within this mechanism, gaze-following was implemented 
as a directed visual search along a retinotopic vector. 
Specifically, instead of returning the first matching location 
in search, the full set of matches is passed through a 
secondary filter. This filter merely sorts the locations by 
their distance from the retinotopic vector. Given a starting 
point and either an angle or an end point, the visual search 
returns the location on an object somewhere along that line 
within a specified tolerance. Knowing the visual location of 
the dominant chimp (A in figure 3) and the food (C in figure 
3), the subordinate performs a visual search for any object 
along the line segment AC. Finding the barrier (B), the 
subordinate can (generally) assume that the food is not 
directly visible to the dominant. 
 
 

Figure 3. Retinotopic searches to find objects 1) between 
A and C or 2) along the ray starting at A. 

 
This simple mechanism allows the visual system to find 

objects along a gaze line, or any potential obstructions 
between two points. While this mechanism is not accurate 
for all gaze-directions (particularly as the ray approaches the 
viewer), they are adequate for basic searches. More 
advanced gaze-following is addressable by having the 
model perform more detailed processing of the returned 
visual locations and the actual visual percepts at those 
locations, such as testing the distance, size, or opacity of an 
obstruction. Given the nature of the experimental 
environment, these higher-level strategies were not 
implemented. 

Model Structure 
The dominant and subordinate models are composed of the 
same constituent parts. Each model performs a full 
environment scan from its current position, looking not only 
for the food, but also the other chimpanzee and the buckets. 
The targets are evaluated to determine which should be 
pursued. 

Environmental Scan The environmental scan is a rapid 
visual search of the environment that attends to all visible 

objects. If the object is a piece of food, a bucket, or another 
chimpanzee, the first occurrence is retained in the model’s 
limited goal representation. If no objects are found, the 
model physically rotates its body to get a different view of 
the environment.  

Target & Strategy Evaluation Once a target has been 
attended to it must be evaluated. For the dominant model 
this is simple: if it’s food, pursue it, otherwise keep looking. 
The subordinate has more to consider. First, the subordinate 
must determine whether the food is near or far. Once 
classified, the subordinate can then choose which strategy to 
use. It can either try to make a mad-dash for the food (grab-
and-go), or use gaze-following to ensure that the coast is 
clear. If the subordinate chooses grab-and-go, it runs the risk 
of contention with the dominant, particularly if the food is 
far away. For gaze-following, the subordinate will use the 
location of the dominant’s head and the target to find any 
intermediate object that may be a visual barrier. If a visual 
barrier is found, the subordinate assumes the dominant 
cannot see the target and will pursue it. If no barrier is 
found, the subordinate rescans the environment ignoring the 
rejected target. 

 
Figure 4. Two choice points for the subordinate model. 

The model must learn which distance threshold to use for 
classification and then which strategy to use. 

Target Pursuit Since the Brauer, et al. experiment recorded 
food preference based on the initial reaching behavior, 
models’ food preferences were recorded immediately after 
evaluation. The full models, however, are able to navigate in 
the environment, grab food and even strike each other. 

Model Assumptions and Parameter Selection 
At their heart all models are simplified abstractions of their 
respective phenomenon. Simplifications can be for reasons 
of computational tractability, interpretability, or theoretical 
relevance. The models described here must operate at a 
high-level of fidelity in order to capture the embodied nature 
of the task. The computational costs of the embodied 
simulations required a handful of simplifying assumptions. 

Environmental Assumptions 
In the actual experiment, doors into the experiment cage 
were opened allowing the chimpanzees to enter the space. 
After the subordinate entered, the dominant’s door was 
opened, typically after around 2 seconds. Lacking doors in 
the simulation, each model was “beamed” into the 
experiment space. The delay between the subordinate and 



the dominant was fixed at 2 seconds. Since the 
subordinate’s food preference is only recorded if it is made 
before the dominant makes one, this delay acts as a scalar 
for the food preference measure. Increasing the delay allows 
the subordinate more time to choose, increasing the absolute 
food preference scores. 

Model Assumptions 
Learning Brauer, et al (2007), Hare et al. (2000; 2001) and 
Karin-D’Arcy & Povinelli (2002) all noted a lack of 
learning within their studies. All concluded that the 
preferences and skills exhibited had developed prior to 
testing. For the models to exhibit these behaviors they either 
have to be hand tuned by the modeler or they must be given 
sufficient training prior to testing. Having an architecture 
that can learn allows us to avoid the problem of custom 
tuned models. Each model was run through a series of 
learning trials, which consisted of ten sets of the full 
factorial design of the experiment (e.g. single & dual pieces 
of food at both the near & far distances), for a total of 60 
trials. This was a rough surrogate for the individual’s life 
experience with competitive food foraging. 

Additionally, since gaze-following is learned over time in 
humans (Corkum & Moore, 1995), initial utilities of the 
gaze-following productions were lowered below those of the 
grab-and-go productions (to -1.5). This provides an early 
bias towards grab-and-go, delaying the onset of gaze-
following, potentially providing the model with the time 
necessary to learn the distance classifications.  

Reinforcement Probabilities In order to learn from these 
trials, the models must receive some reinforcement based 
upon their target choices. However, since the trials 
terminate after target choices are made they normally 
wouldn’t receive any reinforcement. One alternative would 
be to run each trial to completion (after either has actually 
consumed the food or been hit). Unfortunately, full trials, 
with the possibility of the dominant chasing the subordinate 
around the cage, are extremely costly computationally (by 
almost an order of magnitude).  

Reinforcements were provided based on the model target 
choices. When either chooses an uncontested piece of food, 
it is rewarded. When both the dominant and subordinate 
decide to pursue the same target there is some chance that 
the dominant will charge and strike the subordinate. 
Naturally, as the distance between the target and dominant 
decreases, the probability that the subordinate will be 
punished for pursuing that same target increases. All other 
things being equal, when the distance to the target is 
equivalent, there is roughly a 50% chance that the 
subordinate will be able to reach the target first. The chance 
of being hit is further reduced by the subordinate’s two-
second head start in the experiment design. The qualitative 
behavioral pattern (i.e. subordinate preferring hidden food 
when both pieces are closer to the dominant) holds through 
probability values where P(hit|near) < 0.5 ≤ P(hit|far) ≤ 1.  

Generally speaking, the higher the probability of being hit 
for any given distance, the more likely the subordinate will 
select the more conservative gaze-following strategy. The 

values P(hit|near)=0.1 and P(hit|far)=0.9 were settled upon 
after a high-level exploration of the parameter space. 
Simulations testing the validity of these assumptions using 
the full trial protocol are ongoing.  

Hit Probabilities Reinforcement Values ACT-R’s 
reinforcement learning mechanism relies ultimately on time 
as its metric (Fu & Anderson, 2006). This forces the 
modeler to map physical rewards and punishments into a 
temporal reference frame. For this experiment, the reward 
for getting a piece of food was set at the average maximum 
time to complete the task using the gaze-following strategy 
(4 seconds). The punishment for being hit needs to be 
greater in magnitude than the food reward in order to pull 
apart the two primary strategies. Parameter explorations 
yielded good convergence rates for punishments around 8 
seconds.  

ACT-R’s default utility learning rate of 0.2 was used. The 
only other parameter modified was the utility noise (0.1), 
which permits weaker productions to occasionally be 
selected over their stronger competitors.  

Simulation Results 
For this model to be a viable account for the subordinate 
chimpanzee’s behavior not only must it fit the aggregate 
food preference measure, but it must also be able to 
correctly classify the target distances and prefer the gaze-
following strategy for far targets. Because the individual 
learning histories result in greater downstream behavioral 
variability, large numbers of models had to be run to arrive 
at stable results. The results presented here are the derived 
from 1000 individual model runs. 

Distance classification 
The key factor in the results presented by Brauer, et al 
(2007) is that the preference for choosing the hidden piece 
of food is dependent upon how close the food is to the 
dominant chimpanzee. While they did not do a full 
parametric exploration of the factor, the simple difference of 
half a meter was sufficient to tease apart the behaviors.  

Similarly the model had to be able to correctly classify the 
target distances as near or far. At the distance choice-point 
(figure 4), three productions are in competition, setting the 
distance threshold to 1.5, 1.6, or 1.7m. Subsequent 
productions then classify the target’s distance using that 
threshold. In the simulation, target distances ≥ 1.6m 
correspond to the far condition. Within each model we can 
simply examine the relative utilities of the distance 
threshold productions; 41% of the models converged upon 
the correct threshold of 1.6m, 21% at 1.5m and 14% at 
1.7m. The remaining 24% of the models showed no clear 
preference as the threshold utilities were all within the 
model’s utility noise. 

Strategy Selection 
When the food is near, it is perfectly rational for the 
subordinate to make a mad-dash for either piece. With the 
two-second head start, there is little chance that it will be 
punished. On the other hand, when the food is further away 



(and closer to the dominant), it makes sense to use the gaze-
following strategy even though it takes longer and requires 
waiting for the dominant to enter the experiment space. If 
the subordinate were to use grab-and-go for far targets, it 
would run an increased risk of contention with the 
dominant, even with its head start. On average gaze-
following took 0.75 – 1.5 seconds longer than grab-and-go.  
While this increase in execution time ultimately reduces the 
temporally discounted reward, it effectively avoids the 
much more costly punishment when conflict does occur. 
Figure 5 shows the percentage of model strategic 
preferences. The majority of the models preferred grab-and-
go when near and gaze-following when far.  
 

Figure 5. Percentage of models preferring a given strategy 
for both near and far target classification. 

Model Fit 
Even with the model complexity and resulting downstream 
behavior variability, the fits were strong (RMSE=7.2%, 
R2=0.96). The qualitative pattern (i.e. preference for hidden 
food when far and equivalence for near) holds across the 
majority of the hit probability ranges discussed earlier.  
 

 

Figure 6. Model (circles) fit to Brauer, et al (2007) data. 
RMSE=7.2%, R2=0.96 

Distance & Strategy Interactions 
The variability in the behavior of any given subordinate 
model is a direct result of its experiences with the dominant 
model. That some learned the wrong distance threshold or 
frequently choose the wrong strategy is hardly surprising. 
Looking more closely at these models is particularly 

informative from a rational analysis perspective. All of the 
models that settled on the 1.5m distance threshold used the 
gaze-following strategy exclusively for far targets (which 
would have been virtually all of the them). Similarly, over 
half the models that settled on 1.7m as the distance 
threshold preferred gaze-following when targets were both 
far and near. These overly conservative models were able to 
stabilize in their patterns because there was no disincentive 
for misclassifying targets as far only near, particularly since 
they could rely upon gaze-following to compensate for 
incorrect distance classifications. 

Discussion 
The simulation presented provides a process model of 
chimpanzee competitive food foraging that combines the 
awareness that individual visual experiences are different 
(i.e. Flavell, level 1) and a simple gaze-following 
mechanism. Leveraging the existing reinforcement-learning 
component in ACT-R, the model learns to prefer the more 
conservative gaze-following strategy when the risk of 
punishment is increased (i.e. when the food is closer to the 
dominant).  The model shows that its “awareness of the 
other’s visual experience” need not entail full visual 
perspective taking (Hare, Call, & Tomasello, Animal 
Behaviour, 2001). Knowledge of the particular spatial 
relationships that the dominant is experiencing are also 
unnecessary. 

Obviously this does not preclude the possibility that 
chimpanzees possess level 2 skills. It is worth considering 
how a model of full perspective taking would perform in 
this situation. Such a model was actually developed before 
the one reported here. It performed egocentric 
transformations of its own perspective, aligning them with 
the perceived position and orientation of the dominant (e.g. 
Hegarty & Waller, 2004). This model was able to learn the 
same qualitative behavioral pattern, but at an increased cost. 
Perspective transformations are particularly costly in terms 
of time; often taking 2-4x longer than gaze-following 
depending on assumptions of representational capacity and 
mental transformation rates. 

What is perhaps more interesting is that if full perspective 
taking and gaze following are allowed to compete, gaze 
following is consistently preferred. While gaze following 
isn’t as accurate at assessing visibility, it is accurate enough 
within the confines of the task and significantly faster. 
Given this, it is unlikely that one could find evidence of full 
perspective taking in the current experimental paradigm.   

These models arose out of our growing interest in 
embodied cognition. While fully situating a model in an 
environment makes some tasks quite simple (i.e. inferring 
intent based on gaze direction), it comes at the cost of 
requiring higher fidelity models and simulations. This 
higher fidelity brings with it increasingly complex dynamic 
interactions between the model and environment (including 
other intelligent agents). Our work with human-robot 
interaction has shown us that these dynamic interactions 
cannot be ignored.  



Conclusions 
A computational learning model was developed that is able 
to effectively reason about what another can and cannot see. 
This embodied model is able to learn and exploit regularities 
in the environment (target distances) to adapt to a 
competitor’s behavior. The model is able to do this with 
only a basic gaze-following mechanism instead of relying 
upon full visual perspective taking (Hare, Call, & 
Tomasello, 2001). This mechanism, implemented as a 
general directed visual search, provides an important 
developmental step towards the development of theory-of-
mind (Baron-Cohen, 1995; Butterworth, 1991).  
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